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PROBLEM

= Despite flexibility and high accuracy deep neural networks are
increasingly opaque.
»  Standard interpretability approaches do not generally allow us to
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=  We derive a novel approach to define what it means to learn in
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=  We show that topological structure for networks that learn to - - ; . . . 1 B2 B3 P P Pr
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=  This theoretical results allows us to derive an early-stopping M Y neural network.

algorithm (see Early Stopping using Topology) that does not 1 a
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require the use of a verification set. VY v v [ 7 v v Algorithm 1 Weighted to binary graph mapping.
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Figure 2. Betti numbers obtained when using 50% (left), and 1% (right) of the training data. Blue curves indicate non-permuted labels; orange curves indicate 3: Let Gy = () and k=0.
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= Learning to generalize in DNN is defined by the creation of 2 6:  Gr = Gr—1U{vi,, éi;v, }, with é;; the undirected

and 3D cavities in the functional binary graphs representing the edge defining v;, — v, .
correlations of activation of distant nodes of the DNN, and the LEARNING AND GENERALIZATION . pr =k / r.
movement of 1D cavities from higher to lower graph density.
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8: until k = r.
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counts connected components, [?)1 counts 2D cavities, [52 3D cavities. Algorithm 2 Generalization.

I: Let G = (V, E) define a DNN with 6 its parameters.
2: Let X be the training set, and set 1" > 0.
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